CLASSIFICATION OF GROUPS WITH ORDER ≤ 20

YI HONG MENTOR: XIYUAN WANG

BASIC TOOL

Theorem. (Classification of Finite Abelian Groups)

Let *G* be a finite Abelian group. Then

 $P \cong C_{d_1} \oplus C_{d_2} \oplus \cdots \oplus C_{d_n}.$

where d_1, d_2, \ldots, d_n are (possibly non-distinct) powers of prime numbers, up to reordering.

BASIC TOOL

Theorem. (Sylow Theorem)

Let G be a finite group and p a prime divisor of |G|. Then

- 1. There exists a p-Sylow subgroup in G.
- 2. If P_1, P_2 are two *p*-Sylow subgroups in *G*, then for some *g*
 - $P_1 = g P_2 g^{-1}.$
- 3. Let n be the number of p-Sylow subgroup in G, then

 $n \equiv 1 \mod p$.

BASIC TOOL

Definition. (Semidirect product)

Given a group G, a subgroup H, and a normal subgroup N in G:

 $G = N \rtimes H$, where $N \cap H = \{e\}$.

The multiplication in *G* is given by $(a_1, b_1) \cdot_G (a_2, b_2) = (a_1 \theta_{b_1}(a_2), b_1 b_2).$

where $\theta: H \to \operatorname{Aut}(N)$

MAIN IDEA

- 1. Locate a normal subgroup in G, call it N.
- 2. Try to find another subgroup *H* in *G* that has trivial intersection with *N* such that |G| = |N||H|.
- 3. Then $G = N \rtimes H$. Each possible structure for N, H, and the action of H on N that defines multiplication in G leads to an unique structure for G.

Groups with **Prime Orders** *p*:

1, 2, 3, 5, 7, 11, 13, 17, 19

Groups with Orders p^2 :

 C_{p^2} $C_p \times C_p$

 C_p

4, 9

- Act on itself using left multiplication.
- Use the class formula to prove Z(G) is a **nontrivial** *p*-group.
- Use the fact that if G/Z(G) is cyclic then G is Abelian to show G is Abelian.
- Use the classification theorem.

Groups with Order pq: C_{pq} $C_p \rtimes C_q$ 6, 10, 14 $p < q, q \equiv 1 \mod p$

Use Sylow theorem to show the *q*-Sylow subgroup is unique and thus normal.

 $G \cong \operatorname{Syl}(p) \rtimes \operatorname{Syl}(q)$ $\langle a \rangle \qquad \langle b \rangle$

Action of Syl(q) on Syl(p) uniquely determined by *action of b on a*.

Trivial action leads to C_{pq} . *Any other action* leads to $C_p \rtimes C_q$ after switching generators.

Groups with Order pq: $p < q, q \equiv a \mod p, a \neq 1$

 C_{pq}

Use Sylow theorem to show Syl(p) and Syl(q) are normal.

Use their normality to show Syl(p) commutes with Syl(q).

 $G \cong \overline{\operatorname{Syl}(p) \rtimes \operatorname{Syl}(q)}$

But since the two groups commute, *the action is trivial*, so the semi product is just a *direct product*.

Groups with Order 8:

 $\begin{array}{ccc} C_8 & C_4 \times C_2 & C_2 \times C_2 \times C_2 \\ D_8 & Q_8 \end{array}$

Use Classification Theorem to handle the Abelian case.

For the non-Abelian case, there must be order 4 element y and another element x not in $\langle y \rangle$.

Conclude the structure based on x^2 .

 $x^2 = e$ gives D_8 . $x^2 = y^2$ gives Q_8 .

Groups with Order 16:

 $C_{16} \quad C_8 \times C_2 \quad C_4 \times C_4 \quad C_2 \times C_2 \times C_4 \quad C_2 \times C$

Divides into several cases based on the size and structure of Z(G).

Consider the correspondence groups in G of subgroups in G/Z(G).

Groups with Order 12 :	C ₁₂ D ₁₂	$\begin{array}{l}C_2 \times C_2 \times C_3\\A_4 & \langle a, b, c a^3 = b^2 = c^2 = abc \rangle\end{array}$
Groups with Order 18 :	C ₁₈ D ₁₈	$\begin{array}{c} C_3 \times C_3 \times C_2 \\ S_3 \rtimes Z_2 \end{array} \qquad E_9 \end{array}$
Groups with Order 20:	C ₂₀ D ₂₀	$\begin{array}{c} C_2 \times C_2 \times C_5 \\ C_5 \rtimes C_4 \end{array} \qquad \langle a, b, c a^5 = b^2 = c^2 = abc \end{array}$

All three are proved in the same way. I'll explain groups of order 20 in detail.

CLASSIFICATION OF GROUPS OF ORDER 20

We simply need to consider the action θ of Syl(2) on Syl(5). where θ : Syl(2) \rightarrow Aut(Syl(5))

Note that $Syl(5) \cong C_5 = \langle a \rangle$ and $Aut(Syl(5)) \cong C_4$.

CLASSIFICATION OF GROUPS OF ORDER 20

Case I: Syl(2) $\cong C_4 = \langle b \rangle$.

 $\theta_1(b)(a) = a^2$: Let $C_4 \cong Syl(2)$ identify with C_4 in Aut(Syl(5)). leads to $C_5 \rtimes C_4$

$$\theta_2(b)(a) = a^4$$
: Send $C_4 \cong \text{Syl}(2)$ to C_2 in Aut(Syl(5)).
Identify $x = (a, b^2), y = (a, b), z = (e, b)$.

leads to $\langle a, b, c | a^5 = b^2 = c^2 = abc \rangle$

 $\theta_3(b)(a) = a$: Trivial action. leads to C_{20}

CLASSIFICATION OF GROUPS OF ORDER 20

Case II: Syl(2) $\cong C_2 \times C_2 = \{e, b, c, bc\}.$

 $\theta_1(b)(a) = a^4$: Let two C_2 in Syl(2) identify with C_2 in Aut(Syl(5)). $\theta_1(c)(a) = a^4$ Identify x = (a, b) and $y = (a^3, bc)$. leads to D_{20}

 $\theta_2(b)(a) = a$: Trivial action. $\theta_2(c)(a) = a$ leads to $C_5 \times C_2 \times C_2$

We have finished our classification.